
So�ware Development (cs2500)

Lecture 12: Methods and Class Design

M.R.C. van Dongen

October 29, 2010

Contents
1 Introduction 1

2 WhyMethods? 2

3 Pass-by-Value 2
3.1 Parameter Taxonomy . 2

3.2 �e Mechanism . 4

4 Examples 4

5 Scanner Objects 5

6 A Ball Game 6
6.1 �e Ball Class . 7

6.2 �e Hand Class . 8

6.3 �e main Method . 10

7 ForMonday 10

1 Introduction
�e �rst part of this lecture corresponds to the start of Chapter 4 but the presentation is di�erent. �e

last two sections are not in the book. �e main objectives are as follows.

• Study methods and why they are useful.

• Learn the pass-by-value rule. �is rule is important because it describes how Java methods should

be evaluated.

1

• Simulate the evaluation of methods.

• Study the use of Scanner objects, which are commonly used for parsing input.

• Learn more about class design by carrying out a case study for a simple “game”. We shall learn

that much of class design boils down to looking for nouns, verbs, predicates, and properties in the

problem speci�cation.

2 WhyMethods?
Methods are arguably one of the most interesting things in computer science. In this section we shall

study methods and why we should bother about them.

Methods are useful for several reasons:

• Methods are interfaces for parameterised computations. Using a single method call we can carry

out a complicated well-de�ned computation.

• Method calls provide reusable computations. Methods allow us to implement an algorithm once,

and use the algorithm several times. �is aspect is the basis for, possibly tedious, automation.

• Method calls are the building blocks of more complex computations. An algorithm that is written

in terms of a short sequence of method calls is easier to understand and easier to develop.

• Method calls are the only mechanism to change private variables.

• Methods encapsulate computations. �ey separate an algorithm’s implementation from where

you use the algorithm. From a so�ware engineering point of view, this is a big advantage. If the

method is called in several locations in a program, then a local change in the implementation of

the method will have a global impact on all method calls in the program. With a copy-and-paste

approach changes would be required at several places in your program.

3 Pass-by-Value
Di�erent programming languages have di�erent mechanisms for evaluating methods. Java methods

are evaluated using the pass-by-value paradigm. Before we can study pass-by-value we need to agree on

some common vocabulary that allows us to explain the pass-by-value mechanism. �e following section

introduces the vocabulary. �is is followed by the explanation of the mechanism.

3.1 Parameter Taxonomy
�is section is a short introduction to parameter (or argument) taxonomy. Understanding it greatly helps

us understand the di�erence between on the one hand the parameters in a method de�nition and on the

other the parameters of a method call.

�e following explains the di�erence:

2

Formal parameter: �e method’s formal parameters are the “variables” inside the method’s parameter

list in the method de�nition. �e following shows the basic form of a method de�nition and its

formal parameters.

〈visibility modifier〉 〈static option〉
〈type〉 〈method name〉(〈type〉1 〈formal parameter〉1,

…,
〈type〉n 〈formal parameter〉n) {

〈body〉
}

Java

Actual parameter: A method call’s actual parameters are the arguments inside the method call’s parame-

ter list. �e following shows the basic form of an instance method call and its actual parameters.

Class method calls are written in a similar way but you leave out the ‘〈reference〉.’ part. In this

example, it is assumed that the method does not return a value.

〈reference〉.〈method name〉(〈actual parameter〉1,
…,
〈actual parameter〉n);

Java

It is important to understand that actual parameters may be literals, variables, as well as more general

expressions.

System.out.println("The answer is " + 42 + "."); Java

Consider the following Java code.

public static int f(int a, int b) {
return a + b;

}

public static void g(int c) {
int a = f(1, 2 + c);
int d = f(1 + 3, a);

}

Java

�e formal parameters of the method f are a and b. �e method g has only one formal parameter: it

is c. �ere are two method calls and both are to f. �erefore there are four actual parameters and they are

given by ‘1’, ‘2 + c’, ‘1 + 3’, and ‘a’.

3

3.2 �eMechanism
Having established the di�erence between formal and actual parameters we are now ready to study the

pass-by-value evaluation mechanism. �e following are the rules. To evaluate a method call with n
parameters:

1. Create a fresh variable for each parameter. Each variable is used to represent the value of a formal

parameter in the method call.

2. For i from 1 to n (from le� to right):

(a) Evaluate the i th actual parameter.

(b) Assign the result of this evaluation to the i th fresh variable.

3. Use the fresh variables to represent the values of the formal parameters and carry out the statements

in the method body.

4. If the method returns a result, then substitute the result for the method call.

Notice that we �rst carry out computations to evaluate the expressions that make up the actual parameters.

When we’re �nished with these computations, we assign the results of these computations to the formal

parameters. When doing this, we always assign a copy of the actual parameter’s value. Even if the i th actual

parameter is a variable 〈var〉 and the i th formal parameter also has the name 〈var〉, then no assignment

to the formal parameter inside the method can a�ect the value of the actual parameter.

Having said that, instance methods can “see” instance variables, so it is possible to change the value of

an instance variable as a result of a call to an instance method.

�e temporary variables that are used to represent the actual parameters are stored on a �rst-in-last-out

data structure which is called a stack.

• When the method is called, variables are created on top of the stack.

• Upon returning from the method, this space is removed from the stack.

�e stack is also used to represent local variables in blocks.

• When the block is entered, variable are created on top of the stack.

• When control leaves the block, this space is removed from the stack.

4 Examples
At this stage, you are invited to go to today’s presentation for some examples that show the pass-by-value

mechanism. �ese examples simply could not be included in the notes: it would have been a waste of

paper. You may �nd the presentation at http://csweb.ucc.ie/~dongen/cs2500/10-11/12/Slides.pdf.

4

http://csweb.ucc.ie/~dongen/cs2500/10-11/12/Slides.pdf

5 Scanner Objects
�is section is an introduction to Scanner objects, which are a useful tool for programs that require input.

A Scanner is an object which can parse primitive types and strings using regular expressions. Reading

input is really easy with Scanner objects.

A Scanner object breaks its input into tokens using a delimiter pattern. By default the delimiter is

whitespace. �e resulting tokens may then be converted into values of di�erent types using the Scanner
object’s various next methods.

�e following creates a Scanner object that lets you read from standard input.

Scanner scan = new Scanner(System.in); Java

Having created the Scanner object, you can use it to read things.

String text = scan.next(); // Get next string.
int i = scan.nextInt(); // Get next int.

Java

You may also create Scanner objects that let you read from Files and even from Strings. We shall

postpone reading from Files until some other lecture. Reading from Strings is discussed further on.

�e following are some of the methods provided by the Scanner class.

Scanner(InputStream source): �is constructor creates a Scanner object from an InputStream,

which is a primitive Java input object. �e class variable in from the class System — it is called

System.in — is an InputStream object reference variable which takes ints input from standard

input.

Scanner(String str): �is is another constructor which lets the resulting Scanner get its tokens

from str.

void close(): �is instance method closes the Scanner. Basically, this is what you do when you’re

�nished reading with the Scanner. It is not allowed to read from a Scanner a�er calling its close(
) method.

boolean hasNext(): �is method returns true if and only if the Scanner has another token on its

input.

String next(): �is method returns the Scanner next token. on its input. �e method will work only

if hasNext() is true. Otherwise, it will cause a run-time exception.

boolean hasNextInt(): �is method returns true if and only if the next token on the Scanner’s input

is an int. �ere are also instance methods hasNextByte(), hasNextShort(), …, which can be

used to determine if the Scanner’s next token is a byte, short, ….

5

int nextInt(): �is method removes the next token from the Scanner’s input and returns it as an

int. �e method will work only if hasNextInt() is true. Otherwise, it will cause a run-time

exception. �ere are also instance methods nextByte(), nextShort(), …, which can be used to

get the Scanner’s next a byte, short, ….

�e following is a self-contained example, which outputs three lines. �e �rst contains the text ‘one’,

the second ‘two’, and the third ‘three’,

import java.util.Scanner;

public class Test {
public static void main(String[] args) {

Scanner scan = new Scanner("one two three");
while (scan.hasNext()) {

System.out.println(scan.next());
}

}
}

Java

�e following is another example. �is time the Scanner object reads from standard input. While

there are tokens on the Scanner’s input the program will get the next token and print it.

Scanner scan = new Scanner(System.in);
while (scan.hasNext()) {

System.out.println("Read: " + scan.next());
}
scan.close();

Java

6 A Ball Game
In this section we shall implement a simple ball “game”. As part of the implementation of the game we

shall learn about class design.

When you think about it, designing a Java for a complex application is not a science. For example,

how do we choose the classes? Once we’ve decided on the classes, how do we choose the attributes, and

how do we choose the methods? �e case-study, which we shall carry out in a moment, shows that the

problem speci�cation provides many clues.

A common technique to �nd classes is to look for actors in the speci�cation. �is works, because

the actors correspond to the objects. �e actors do things (verbs): these are the methods. �e actors

own things, these are the attributes. Here “owning” things includes predicates. A predicate is a term

designating a property or relation. For example, ‘being tall’, having ‘a length’, ‘being old’, having ‘an age’,

and so on.

We shall now use this technique to design a “game” application. �e objective of the game is to take

and drop balls subject to certain rules. �e following speci�cation has been deliberately simpli�ed.

6

• �ere are hands and balls;

• Balls are either used or free;

• Initially balls are free;

• Used balls cannot be taken by hands;

• Free balls can be taken by hands;

• If a ball is taken by a hand it becomes used;

• A hand can drop its ball;

• Dropping a ball makes it free;

• Each ball has its own name; and

• Each hand has its own type: le� or right.

For simplicity we shall assume that any String may act as a valid ball name or hand type.

To �nd the classes in our program we need to look for the actors in the program. �e reason why this

is useful is because the actors usually correspond to the objects and each object is an instance of its class.

To �nd the actors we look for nouns in the speci�cation. �is is called a noun analysis. �e nouns in the

previous itemised list are the italicised words. If we take the singular form of the nouns we have four

nouns: ‘ball’, ‘hand’, ‘name’, and ‘type’. �e nouns ‘name’ and ‘type’ are not really active, i.e. they don’t do
very much. �e active (singular) nouns are ball and hand. It seems reasonable to create a class for each of

them. We shall call them Ball and Hand.

6.1 �e BallClass
Let’s �rst look at the Ball class. To see which methods and attributes are required by the Ball class, it

makes sense to look at properties of Balls and for the actions of Balls. �e following requirements seem

most relevant.

• Balls are either used or �ee;

• Initially balls are �ee; and

• Each ball has its own name.

It seems like a good idea to have attributes used and name and provide getter and setter methods for these

attributes. Since each Ball has its own name and Balls are initially free, it seems reasonable to have a

Ball constructor that depends on a String which is the Ball’s name.

7

public class Ball {
private final String name;
private boolean used;

public Ball(String name) {
this.name = name;
used = false;

}

// Getter and setter methods omitted.

@Override
public String toString() {

return "Ball[name = " + name + "]";
}

}

Java

For simplicity the getter and setter methods have been omitted. Notice however that the attribute

name is a final attribute. �is is reasonable because it is not stated that Balls can change their name.

6.2 �e HandClass
Next let’s look at what’s required for the Hand class. �e following are the requirements that relate to

properties and actions of Hands.

• Used balls cannot be taken by hands;

• Free balls can be taken by hands;

• If a ball is taken by a hand it becomes used;

• A hand can drop its ball;

• Dropping a ball makes it free; and

• Each hand has its own type.

�e italicised words are candidate properties and actions of Hands. It is obvious that a hand has its own

‘type’ and also has ‘its Ball’, so we might just as well introduce an attribute type and ball. It is also

obvious that the constructor should depend on the Hand’s ‘type’. �e things a Hand can do is ‘take a Ball’,

‘drop its Ball’, and ‘make its Ball free’. �e verbs are ‘take’ and ‘drop’ and each operates on a single object:

a ‘Ball’. Usually it is a good idea to turn the verbs into method names and the objects into method

arguments.

Let’s see what we end up with if we use this as a rough implementation of our Hand class.

8

public class Hand {
private final String type;
private Ball ball;

public Hand(String type) {
this.type = type;
ball = null;

}

public void take(Ball ball) { 〈to do〉 }
public void drop() { 〈to do〉 }
// Getters and setters omitted.

@Override
public String toString() {

return "Hand[type = " + type + ", ball = " + ball + "]";
}

}

Java

Note that we did not implement the method drop() with a given Ball argument: drop(Ball ball
). �is makes sense because a Hand always drops its current Ball.

We still need to complete to implement the proper rules for ‘taking’ and ‘dropping’ Balls. Let’s start

with the method ‘take()’.

public void take(Ball ball) {
if (this.ball != null) {

// We cannot take a Ball if Hand is full.
System.err.println("** " + this + " is full.");
System.err.println("** Cannot take " + ball + ".");

} else if (ball.getUsed()) {
// We cannot take a used Ball.
System.err.println("** " + ball + " is taken.");
System.err.println("** Cannot take it.");

} else {
// Take ball.
// Formally mark ball as used.
ball.setUsed(true);
// Make ball our current Ball.
this.ball = ball;

}
}

Java

�e implementation of the method ‘drop()’ turns out equally easy.

9

public void drop() {
if (ball == null) {

// We cannot drop a ball if we don’t have one.
System.err.println("** " + this + " is empty.");
System.err.println("** Cannot drop any ball.");

} else {
// Drop our current ball.
// Formally mark ball as free.
ball.setUsed(false);
// Make hand empty.
ball = null;

}
}

Java

6.3 �e mainMethod
Now that we’ve implemented our classes let’s “play” with our Ball and Hand objects. �e following is the

implementation of the main.

public static void main(String[] args) {
Hand left = new Hand("left");
Hand right = new Hand("right");
Ball baseBall = new Ball("baseball");
Ball footBall = new Ball("football");

left.take(baseBall);
right.take(baseBall); // Results in error message
right.take(footBall);
left.drop();
left.drop(); // Results in error message

}

Java

7 ForMonday
Study the notes and Pages 71–79 from the book.

10

	Introduction
	Why Methods?
	Pass-by-Value
	Parameter Taxonomy
	The Mechanism

	Examples
	Scanner Objects
	A Ball Game
	The Ball Class
	The Hand Class
	The main Method

	For Monday

